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COMMENT

Note on collective variable theory of nonlinear Schr̈odinger
solitons

A B Moubissi, P Tchofo Dinda and T C Kofane
Laboratoire de Physique de l’Université de Bourgogne, Avenue Alain Savary, BP 47 870,
21078 Dijon, France

Received 24 November 1999

Abstract. Inconsistencies arise in a recently developed collective variable theory of nonlinear
Schr̈odinger solitons, as a result of a particular formulation of the energy-conservation principle
in terms of the time derivative of the phase of the original field. We show that the inconsistencies
are resolved either by correctly reformulating the energy-conservation principle or by directly
averaging the nonlinear Schrödinger equation.

A well known example of an equation which admits pulse-like soliton solutions is the nonlinear
Schr̈odinger equation [1]. A characteristic feature of these bright solitons is that they are
localized variations of the associated field. This behaviour, which is quite similar to that
of particle-like objects, has therefore naturally led to the formulation of collective-variable
theories in which solitons are treated as particles [2–4]. In the standard collective-variable
(CV) approach, one introduces particle-like parameters such as the centre of mass of the pulse,
or the soliton width, and one considers them as dynamical variables.

In this brief comment we point out some inconsistencies in a recently developed CV theory
[4], which result from a particular formulation of the energy-conservation principle in terms of
the time derivative of the phase of the wavepacket associated with the soliton. We show that the
inconsistencies are resolved by simply reformulating the energy-conservation principle within
the average Lagrangian formalism. We first recall below the essential steps of the derivation
of the CV equations of motion by the approach developed in [4], in order to give the reader a
deep insight into the statement of the problem. The nonlinear Schrödinger equation (NLSE)
may take the following general form:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ α2|ψ |2ψ = 0 (1)

whereα2 designates the nonlinear coefficient of the medium. Heret andx represent the time
and space coordinates, respectively. In [4], the first step of the derivation of the CV equations
is to decompose the original field in the following way:

ψ(t, x) = φ(t, x)exp[iS(t, x)] (2)

whereφ andS represent, respectively, the amplitude and phase of the original fieldψ . Next,
the ansatz forφ is chosen as follows [4]:

φ(t, x) =
[

1

σ(t)

]1/2

φ̃[σ(t)−1(x − xc(t))] (3)
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wherexc andσ represent, respectively, the centre of mass and the width of the wavepacket.
Then one integrates the imaginary part of the NLSE (1) to obtain the following expression for
the phase of the original field [4]:

S(t, x) = B(t) + ẋc(t)[x − xc(t)] +
1

2

σ̇ (t)

σ (t)
[x − xc(t)]2 (4)

whereσ̇ = dσ/dt , ẋc = dxc/dt andB(t) is a constant of integration.
We would now like to point out the following fundamental point. In [4], the equation of

motion for the pulse widthσ was obtained by using an energy-conservation principle, that is,
by setting the time derivative of the energy to zero. However, in [4], the energy was chosen to
be of the form

E = −
〈
∂S

∂t

〉
= σ̇ 2γ

2

2
+
ẋ2
c

2
− α2 δ

2

σ
+

1

2

µ2

σ 2
(5)

where the averaging is the usual quantum expectation value〈O〉 = ∫
ψ∗Oψ dx. In other

words, taking the time derivative of equation (5) leads to the following equation forσ :

σ̈ = 1

σ 3

µ2

γ 2
− α

2

σ 2

δ2

γ 2
(6)

whereγ 2 = ∫ +∞
−∞ ξ

2φ̃2 dξ , µ2 = ∫ +∞
−∞ φ̃

2
ξ dξ , δ2 = ∫ +∞

−∞ φ̃
4 dξ , with ξ ≡ (x − xc)/σ .

Equation (6) corresponds exactly to equation (26) of [4]. We show below that the averaged
Lagrangian approach leads to an equation of motion forσ that differs from equation (6), and
we resolve this contradiction.

In this context it is worth recalling that the NLSE (1) can be restated as a variational
problem corresponding to the Lagrangian density given by

L = −1

2

∣∣∣∣∂ψ∂x
∣∣∣∣2 +

α2

2
|ψ |4 +

i

2

(
ψ∗
∂ψ

∂t
− ψ ∂ψ

∗

∂t

)
(7)

whereψ∗ designates the complex conjugate ofψ . In other words, the NLSE (1) corresponds
exactly to the following variational equation:

δL

δψ
= ∂

∂t

[
∂L

∂[∂ψ∗/∂t ]

]
+
∂

∂x

[
∂L

∂[∂ψ∗/∂t ]

]
− ∂L

∂ψ∗
= 0 (8)

which results from the variational principle [2, 3]δ
∫∫
L(ψ,ψ∗, ψt , ψ∗t , ψx, ψ

∗
x ) dx dt = 0,

whereψt = ∂ψ/∂t andψx = ∂ψ/∂x. Thus, the above Lagrangian which, is consistent with
the original field equation (1), leads to the following Hamiltonian:

H = −
∫
L dx +

∫ [
i

2

(
ψ
∂ψ∗

∂t
− ψ ∂ψ

∗

∂t

)]
dx =

∫ [
1
2|ψx |2 − 1

2α
2|ψ |4] dx. (9)

Then, using equations (2)–(4), we obtain the following expression:

H = σ̇ 2γ
2

2
+
ẋ2
c

2
− α2 δ

2

2σ
+

1

2

µ2

σ 2
(10)

which is consistent with the original field equations and which differs fromE = −〈∂S/∂t〉
[4] by

E −H = −α2 δ
2

2σ
. (11)

Taking the time derivative ofH in equation (10) yields the following equation:

σ̈ = 1

σ 3

µ2

γ 2
− α2

2σ 2

δ2

γ 2
(12)



Comment 2455

which is consistent with the original NLSE (1). Therefore the fundamental point here is
that equation (12) differs from that found in the previous work [4] (see equation (6)), by the
presence of the factor12 in the last term of the right-hand side of equation (12). We attribute
the disagreement between equations (12) and (6) to the particular formulation of the energy
asE = −〈Ṡ〉 which comes directly from quantum mechanical principles based on linear field
theories, and therefore cannot be straightforwardly extended to nonlinear field theories.

As a final remark, note that in the case of the fundamental soliton (α2 = 1), φ is a sech
function ofxc andσ , which here are both constant, and so one can takexc = 0. In this case
the ansatz functionφ takes the formφ = φ̃ = sech(x), with σ = 1, and all the other soliton
parameters can be calculated explicitly:µ2 = ∫ +∞

−∞ φ
2
x dx = 2

3 andδ2 = ∫ +∞
−∞ φ

4 dx = 4
3.

Then equation (12) reduces to ¨σ = 0. In contrast, equation (6) does not fulfil this consistency
with the fundamental soliton problem. In conclusion, we would like to emphasize that the
soliton parameters are quantities that play a crucial role in many practical applications such as
in signal processing and communications [2]. Extreme care should therefore be taken when
defining those quantities in soliton-bearing systems.
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